
Abstract. Contemporary continuum-based models of
solvation in polar media are surveyed and assessed, with
special focus on non-equilibrium solvation. A new hy-
brid approach combining molecular-level treatment of
inertial solvent response, and inclusion of inertialess
solvent response at the continuum level, is presented and
illustrated in terms of calculated equilibrium solvation
free energies for small molecular ions and reorganization
free energies for model dumbbell systems.
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Reorganization energy

Introduction

Studies of kinetics and mechanisms of charge transfer
reactions in the condensed phase are an important and
rapidly developing branch of theoretical chemistry.
Electron transfer (ET), the simplest process of this kind,
displays the role of solvation effects in chemical kinetics
in the purest way. The solvent reorganization accom-
panying ET mainly contributes to its free energy barrier,
and the corresponding reorganization energy is the key
kinetic parameter of the ET [1, 2]. Evidently, its com-
putations are a part of the solvation theory. Conven-
tional theoretical approaches are mainly targeted at
treating equilibrium solvation effects, whereas solvent
reorganization is an essentially non-equilibrium phe-
nomenon. Its study, requiring an extension of standard
methodologies, has inspired the elaboration of specific
new algorithms.

Earlier theoretical formulations of the ET rate
expression [3, 4] were based on the extremely simple

homogeneous solvent model, neglecting the excluded
volume effect. Appearance of a new generation of con-
tinuum solvent models, among which the PCM [5, 6, 7]
is one of the most efficient and popular, prompted
remarkable progress in studies of solvation equilibria.
For the implementation to ET reaction kinetics, a
development of the existing prescriptions proved to be
necessary [8, 9, 10]. Successful computations of ET
reorganization energies became possible only by means
of a more sophisticated solvent model, beyond the PCM
[11, 12]. Further progress, especially in the field of bio-
logical applications, requires recent molecular solvent
models to be invoked as fundamental background to the
ET theory.

In the present paper we outline the basic principles
underlying the theoretical treatment of ET reorganiza-
tion energies, and briefly discuss several computational
procedures, including the most contemporary. The
methodology is still at the development stage, and re-
fined versions are expected to appear in the near future.

General formulations

The linear response approach in the functional space

Two basic field variables underlying the solvation theory are solute
charge density q(r) and medium response field Feq(r). They can be
considered, respectively, as generalized collective solute and solvent
coordinates. Being both functions of space point vector r, they
actually represent an infinite number (a three-dimensional contin-
uum) of variables. The following general relations can be estab-
lished [13]. The linear response postulates a linear connection
between a given field q(r) and a field Feq(r) that is equilibrated to
q(r):

Ueq rð Þ ¼
Z

d3r0Kðr; r0Þqðr0Þ � K̂qðrÞ ð1Þ

The two-point function K(r,r¢) is called the integral kernel (or
Green’s function); it is symmetric: K(r,r¢)=K(r¢,r). The second part
of Eq. 1 reformulates the theory in terms of the linear symmetric
operator K̂ (Green’s operator) represented by kernel K(r,r¢). Eq. 1
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corresponds to a pure linear case; its generalization is considered
below.

A conventional approximation of the ET theory considers free
energy surfaces as a superposition of two shifted paraboloids, the
quadratic functions of solvent coordinates. For the present case we
introduce the quadratic free energy functional (FEF) DF [F|q], or
for brevity, DF[F]:

DF U½ � ¼ Cþ
Z

d3rqðrÞUðrÞ þ 1

2

Z
d3rd3r0Lðr; r0ÞUðrÞUðr0Þ ð2Þ

The first constant term is F-independent. The second term,
representing the solute/solvent interaction, is linear in F. The third
quadratic term is called ‘‘the solvent self-energy’’. Its kernel
L(r,r¢)=L(r¢,r) is symmetric. A purely linear case is the simplest and
most obvious; then the constant C and the kernel L in the self-
energy are q-independent.

One can define the linear symmetric integral operator L̂, with
kernel L(r,r¢), similar to operator K̂ in Eq. 1. Using this contracted
notation, the basic relation between K̂ and L̂ is established by a
variation of FEF (2) relative to F:

K̂ ¼ �L̂�1 ð3Þ

For a stable system L̂ is positive-definite and K̂ is negative-
definite.

Given solute charge density q(r), Eqs. 1 and 3 determine the
minimum point F=Feq of FEF(2). The corresponding equilibrium
solvation free energy is

DFeq ¼ C þ 1
2

qjK̂jq
� �

qjK̂jq
� �

¼
R

d3rd3r0Kðr; r0ÞqðrÞqðr0Þ ð4Þ

Purely electrostatic interactions have been considered above.
In real life they always coexist with van der Waals interactions.
The interference of electrostatic and van der Waals forces results
in the observation [14, 15, 16] that Feq 6¼0 when q=0. This fact
can be taken into account by a slight modification of the above
theory. Equations 1 and 2 must be generalized by introducing a
constant (nonvarying) field F0 and making the change
U! U0 ¼ U� U0. By this means, from Eq. 1 one immediately
obtains:

UeqðrÞ ¼ U0 ðq ¼ 0Þ ð5Þ

Further analysis is simplified if kernel K(r,r¢) (and, therefore,
kernel L(r,r¢)) is q-independent. The consistency of the above for-
mulation then requires that constant term C in the FEF (1) is also
q-independent. According to Eq. 4, DFeq=C corresponds to the
case q=0 and C can be interpreted as van der Waals free energy,
whereas the last term in Eq. 2 represents a complementary self-
energy term, associated with pure electrostatic effects (it vanishes at
equilibrium point (5)).

We can now consider two levels for treating nonlinear effects.
The q-dependence of F-independent parameters appearing in
Eqs. 1 and 2 is introduced as a first step. We allow for a q-
dependence of constant C, kernels L(r,r¢) and K(r,r¢) and the field

shift, denoted as �U lim
q!0

�U ¼ U0

� �
. In this way, the generalized linear

theory is based on the equation

DF Ujq½ � ¼ Cþ
Z

d3rqðU� �UÞ þ 1

2

Z
d3rd3r0ðU� �UÞLðr; r0ÞðU� �UÞ

ð6Þ

Here C, L and �U depend on q. In this way the quadratic
dependence of the FEF relative to the response field F is retained.
It is this parabolic dependence on the solvent coordinate that
constitutes the essence of the ET theory. On the other hand, the
counterpart of Eqs. 1 and 3,

ðUeq � �UÞ ¼ K̂q; K̂ ¼ �L�1; ð7Þ

represents a nonlinear theory.
However, we can still treat deviations of the solvent coordinate

from its equilibrium position in terms of a linear model. The cor-
responding FEF representation

DF Ujq½ � ¼ DFeq þ
1

2
U� UeqjL̂jU� Ueq

� �
ð8Þ

serves as a basis for a linear (relative to F) theory of nonequilib-
rium solvation effects, such as reorganization energy. Note that the
linearized expression (4) for the equilibrium solvation free energy is
no longer valid. The value DFeq can be obtained from Eq. 7 by
thermodynamic integration [13].

A concluding remark is in order. Although F(r) is a continuum
field, it is well-defined for both continuum and molecular solvent
models, and serves equally well as a collective solvent coordinate in
both cases. This is the main advantage of the present formulation. It
suggests a unified treatment which implies only that different (con-
tinuum or molecular) solvent models generate different forms for
kernels L(r,r¢) and K(r,r¢). In other respects the structure of linear
continuum and molecular theories is the same. We also note that a
continuum theory based on theMaxwell equations is fully linear and
noq-dependencies should be considered.However, this complication
becomes evident when molecular solvent models are addressed.

The reorganization energy

We now consider two charge distributions qI(r) and qII(r) corre-
sponding to the initial and final states of a ET process. The relevant
equilibrium response fields FI(r) and FII(r) are:

UI ¼ K̂IqI; UII ¼ K̂IIqII ð9Þ

Operator K̂ can be q-dependent, which explains the state indices I
and II labelling K̂ in Eq. 9. The conventional (truly linear) theory
neglects this q-dependence by assuming K̂I ¼ K̂II ¼ K̂.

In the general case we can find equilibrium free energies DFI and
DFII, (corresponding to charges qI and qII) by thermodynamic
integration. According to general equation (8),

DF UjqI½ � ¼ DFI � 1
2 U� UIjK̂�1I jU� UI

� �
DF UjqII½ � ¼ DFII � 1

2
U� UIIjK̂�1II jU� UII

� � ð10Þ

We recall that operators K̂I and K̂II are negative-definite. We
also note that, although field shifts �U are not explicitly included in
the free energy expressions for the sake of brevity, Eq. 10 does
account for the shift effect. Provided �U is q-independent it cancels
in the field differences F��UI and F��UII. The free energy surface
formed by the pair of paraboloids (10) is shown schematically in
Fig. 1. This figure illustrates how two reorganization energies kI
and kII arise by inserting F=FII in the first line of Eq. 10 and
F=FI in its second line:

kI ¼ � 1
2 UII � UIjK̂�1I jUII � UI

� �
kII ¼ � 1

2
UI � UIIjK̂�1II jUI � UII

� � ð11Þ

They become equal (kI=kII=k) in the case K̂I ¼ K̂II ¼ K̂ when
operator K̂ becomes q-independent. Then the standard Marcus
expression for ET energy barrier DU arises:

DU ¼ DDFþkð Þ2
4k

DDF ¼ DFII � DFI

ð12Þ

A more complicated expression arises in case (11). If kI and

kII are close (
��kII�kI

kI

��>1), the average reorganization energy

k=(kI+kII)/2 can be inserted into Eq. 12 as a reasonable approx-
imation.
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Let us now return to the conventional case with the q-inde-
pendent response operator K̂. Then Eqs. 11 reduce to

k ¼ 1

2
TI I þ TII II � 2TI IIð Þ ð13Þ

Here Tab are the elements of the so called reorganization matrix:

Tab ¼ �
Z

d3rqaðrÞUbðrÞ ¼ � qajK̂jqb

� �
ð14Þ

where the contracted notation for the integral follows Eq. 4.
Equation 13 acquires the structure of the well-known two-

sphere expression for the reorganization energy [4, 17] by defining
two effective sphere radii, RI I and RII II, proportional to

1
TI I

and
1

TII II
, and the effective sphere separation RI II, proportional to

1
TI II

.

This interpretation makes sense when the two ET states (donor

state I and acceptor state II) are well-localized and the donor and

acceptor spheres don’t overlap significantly. Equation 13 remains

valid in all continuum theories when the q-dependence of operator
K̂ does not appear.

Continuum theories of ET

The PCM approach

In the early stages of the development of ET theory,
the simplest continuum models were used [4, 18]. As a
rule, excluded volume of the solute ET system was
neglected and spherical shapes of donor and acceptor
centers were postulated. Such approximations become
too restrictive when ET in real chemical objects was
studied. They can be circumvented in terms of the
PCM methodology [5, 6, 7], which is widely accepted
for computations of equilibrium solvation effects. Its
application to treating non-equilibrium phenomena,
such as reorganization energies, is based on the
linear theory outlined briefly above. Within a PCM

realization, the response operator K̂ is defined by the
following pair of equations:

rðrÞ ¼ 1
4p 1� 1

e0

� �
V̂ qðrÞ þ ŜrðrÞ þ 2pr
� 	

; r 2
P

UðrÞ ¼
R
R

d2r0 rðr0Þ
jr�r0 j; r 2 V0

ð15Þ

Here V̂ and Ŝ are volume and surface integral oper-
ators:

V̂ qðrÞ ¼
R
V0

d3r0aðr; r0Þqðr0Þ

ŜrðrÞ ¼
R
R

d2r0aðr; r0Þrðr0Þ

aðr; r0Þ ¼ @
@nðrÞ

1
jr�r0 j

ð16Þ

The cavity surrounding the solute particle is con-
structed using the PCM prescriptions [5, 6, 7]. The
dielectric constant e=1 inside the cavity and e=e0 (the
static permittivity) outside the cavity. The cavity bound-
ary S surrounds the solute volume V0; V1 is the external
volume. This well-known scheme is illustrated in Fig. 2a.
The response field is determined in terms of the surface
charge density r(r) on the cavity boundary. The first
equation (15) is the integral equation [19, 20] defining r(r),
given solute charge density q(r). The kernel a(r,r¢) in
Eq. 16 is obtained by performing the normal derivative
@=@nðrÞ on the boundary surface S; the symbol r in braces
means that the differential of variable r is considered.

Equations 15 and 16 represent a purely linear algo-
rithm implicitly defining the operator K̂. Here, as in any
other continuum theory, K̂ does not depend on q. Al-
though explicit evaluation of K̂ is unavailable, its matrix
elements qajK̂jqb

� �
with different solute distributions qa,

qb can be calculated. According to Eq. 14 these matrix
elements comprise the reorganization matrix, opening
the door to the PCM evaluation of reorganization en-
ergy k.

One more complication should be mentioned here.
The response field F(r) actually contains two compo-
nents: the fast inertialess field U1ðrÞ and the sluggish
inertial field Fin(r). The first term is associated with
electronic polarization of the medium by the solute
charge. The second one represents orientational and
translational solvent polarization modes. These modes
involve charge distributions of solvent particles, both
permanent and those induced by the environment (note
that the charges induced by the solute create U1).
Altogether, F=Ftotal, such that within a linear response
approximation:

Utotal rð Þ ¼ U1 rð Þ þ Uin rð Þ ð17Þ

Only the inertial field contributes to the ET reorga-
nization energy [1–3]. It can be separated from the total
response by making two PCM computations. Perform-
ing the first computation with e=e0 outside the cavity
provides Ftotal(r). This procedure implicitly defines the
total response operator K̂total. The second computation

Fig. 1. Schematic one-dimensional illustration of free energy
changes in a charge transfer reaction in the two-state representa-
tion. The two parabolic energy curves represent FEFs for
initial q ¼ qIð Þ and final q ¼ qIIð Þ states in the harmonic
approximation
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is performed using e=e¥ (the optical permittivity) out-
side the cavity. It gives U1 and, implicitly, the inertialess
response operator K̂1. The required inertial component
arises as differences:

Uin ¼ Utotal � U1
K̂in ¼ K̂total � K̂1

ð18Þ

These quantities should be inserted instead of F and
K̂ in the procedure formulated in an earlier section
(‘‘The reorganization energy’’).

As described in this section on the reorganization
energy, computations of reorganization energies are
based on the solute charge densities qa(r) obtained in gas
phase SCF or CI computations (usually, SCF or 2·2 CI
is sufficient). An alternative method, based on SCRF
computations of qa(r), has also been tested and imple-
mented [8, 9, 10]. This modification accounts for elec-
tronic polarization of the solute by the solvent response
field. The results of the two approaches are quite similar.
The following discussion of continuum level results is

based on computations using nonlinear SCRF versions
of PCM and its advanced modification considered be-
low. The simpler fully linear CI approach is combined
with molecular level studies in a later section (‘‘Molec-
ular level solvent models’’).

Implementing these techniques, test computations
with model ET substrates ðCH2Þþn and ðCH2Þ�n in water
solvent have been performed, first with semi-empirical
[8] and then with ab initio [9] charge distributions q(r).
Their extension to real ET systems [10] has revealed a
strong discrepancy between computed and experimental
solvent reorganization energies. Successful computa-
tions are possible only via a more sophisticated tech-
nique described below. Nonetheless, several PCM-type
computations of reorganization energies have been re-
ported since [21, 22].

Breakdown of the PCM approach and the advanced
continuum theory

Solvent reorganization energies for a series of intramo-
lecular ET reactions have been studied experimentally
[23, 24, 25]. The ET solute systems were specially syn-
thesized, and were selected in order to eliminate ambi-
guities in the interpretation of experimental data as
much as possible. A typical illustration is suggested in
Fig. 3. The choice of rigid bridge structures fixed almost
definitely the relative distance between the donor
(biphenylyl) and acceptor (naphtyl) centers and their
mutual orientation. Some remaining ambiguity due to
internal rotations of naphthyl and phenyl groups can be
eliminated by a quantum-chemical computation of most
stable conformational structures.

Computed k values for systems shown in Fig. 3 are
compared with the experiment in Table 1. The PCM
computation seems to systematically exaggerate the
solvent reorganization energies, a problem deserving
special consideration.

Fig. 3. Typical intramolecular ET systems. Charge is transferred
from the biphenylyl to the naphthyl fragment through the spacer
structure

Fig. 2. Schemes of continuum solvent models. The solute charge
density is confined within the solute region V0. a PCM; b FRCM
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Acomment on the strategy of PCMcomputations [5, 6,
7] is required at this point. The theory is, of course, semi-
empirical, based on the adjustable cavity parameteriza-
tion. The cavity, assembled as a collection of overlapping
atomic spheres drawn around each solute atom, has
a boundary formed by external fragments of these
spheres. The basic PCM parameter is the ratio j between
electrostatic (rel) and van der Waals (rvdW) atomic radii.

j ¼ rel
rvdW

ð19Þ

It is assumed to be the same for all atoms, and indeed
proved to be approximately constant for many different
solvents [7, 26].

The choice (19) is inferred from numerous computa-
tions of equilibrium solvation free energies. It leaves no
flexibility to adjust computations of non-equilibrium
solvation phenomena, such as reorganization energies.
The poor computational results seen in Table 1 point to
internal inconsistency in the theory, which could not be
revealed when only equilibrium effects were considered.
Similar results were observed in computations for other
ET systems.

This inconsistency has been eliminated using the so-
called frequency resolved cavity model (FRCM) [11, 12,
27]. This method differs from the PCM method because
it separates the inertialess (high-frequency) response of
the medium from the inertial (low-frequency) one. The
solute is surrounded by two surfaces (S1 and S2), as

shown in Fig. 2b, each of which is constructed as a
collection of overlapping spheres similar to the PCM
model. For the first cavity, contained within the internal
surface S1, the radius of each sphere is defined as
r1=jrvdW, where j=0.9 is a universal empirical factor
common to all solvents and rvdW is the van der Waals
radius of the particular solute atom. The radius r2
defining the external surface is given by

r2 ¼ r1 þ d ¼ 0:9rvdW þ d ð20Þ

where d is another empirical constant, pertaining to the
given solvent (it correlates roughly with the character-
istic size of a solvent particle). Between the two surfaces
the medium is represented by the inertialess dielectric
constant e¥, while outside the outer cavity the static
dielectric constant e0 is applied. The layer between the
surfaces corresponds roughly to the first solvation shell.
Calculation of the potential field F(r) in this scheme
amounts to simultaneously solving two coupled PCM-
type equations describing charge densities on the sur-
faces of two cavities, namely r1 (on the inner surface)
and r2 (on the outer one); they contribute additively to
the total F(r) and are similar to Eq. 15.

A simple illustration of this approach is a spherically
symmetric Born-like case (a point ion of charge Q placed
at the center of two concentric spheres with radii r1 and
r2). Its total solvation energy

DFeq ¼ �
Q2

2
1� 1

e1

� �
1

r1
þ 1

e1
� 1

e0

� �
1

r2


 �
ð21Þ

is naturally divided into inertialess and inertial contri-
butions; it reduces to the Born expression when r1=r2.
The extra cavity parameter, namely the width d of the
intersurface layer in Eq. 20, brings additional flexibility
and allows us to simultaneously account for both equi-
librium solvation energies and the non-equilibrium ET
reorganization energies.

The FRCM results corresponding to the choice of
cavity parameters following Eq. 20, with d=2.3 Å for
tetrahydrofuran, are compared with PCM ones in Ta-
ble 1. They fit the observed (or interpolated) k values
reasonably well. Other examples of a successful FRCM
treatment have been also reported [11, 12, 27]. We don’t
discuss here different, more or less sophisticated, ver-
sions of k computations (extended CI/SCRF taking into
account the solute polarizability, different methods for
orbital SCF computations, and so on). The basic results
illustrated by Table 1 are not sensitive to such compu-
tational details. Altogether they demonstrate serious
problems arising in a conventional continuum solvent
theory, which are resolved by its FRCM modification.

Inherent problems of the continuum approach

Several observations cannot be properly accounted for
in the framework of continuum electrostatic solvent

Table 1. Solvent reorganization energies for intramolecular charge
transfer in systems shown in Fig. 3

ET systema PCM
results
b,c (eV)

FRCM
resultsb,c

(eV)

Experimentald

(eV)

I ) 1.07 0.41 0.39
+ 1.02 0.42 0.41

II ) 1.16 0.45 0.47
+ 1.09 0.46 0.49

III ) 1.20 0.50 0.50
+ 1.14 0.51 0.52

IV ) 1.25 0.53 0.55
+ 1.18 0.55 0.57

V ) 1.34 0.61 0.62
+ 1.27 0.63 0.64

a Structure numbers correspond to Fig. 3. Symbols ‘‘)’’ and ‘‘+’’
refer to anionic and cationic systems respectively (in other words
electron and hole transfer);
b solvent as tetrahydrofuran, d=2.3 Å in Eq. 20, see [11, 12];
c the SCRF version;
d the experimental estimates are based on measured values
k=0.62±0.03 (electron transfer) and k=0.64±0.03 (hole transfer)
for the largest structure V [23,24]. Figures for smaller structures
were obtained by means of an interpolation procedure based on the

Marcus analog of Eq. 13: k ¼ 1
2

1
e1
� 1

e0

� �
1

RD
þ 1

RA
� 2 1

RDA

� �
, where

RD and RA are effective radii of donor and acceptor centers
(interpolation parameters) respectively, and RDA is the donor-
acceptor separation (measured using the geometry of a given
structure)
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models. The most remarkable example is the tempera-
ture dependence of reorganization energies. In a stan-
dard continuum (say, PCM or FRCM) computation it
emerges via the temperature dependence of the dielectric
permittivity e¥ and e0. This description proves to be
ineffective. It not only strongly underrates the magni-
tude of the effect, but also predicts its sign incorrectly.
The value of k decreases with the increase in the tem-
perature [28, 29] whereas its estimate based on the
temperature change of e¥ and e0 suggests the opposite
trend. The origin of this failure lies in the fact that the
temperature dependence of the solute cavity parameters
is ignored. The size and the shape of the cavity are fixed
in a continuum computation and no solid prescription is
known for incorporating their changes. This can only be
done empirically, so the temperature trend of k was
reproduced in terms of the FRCM by properly fitting
the cavity parameter d (see Eq. 20) [27].

The continuum approach, in its local electrostatic
version, is also unable to explain significant values (0.1–
0.2 eV) of reorganization energies observed in nonpolar
solvents (benzene, dioxane) [30] where e0=e¥ and a
computation shows no effect.

At the fundamental level of description, the effects
missing in the continuum solvent models are associated
with the translational diffusive motion of solvent particles
[31, 32, 33, 34, 35]. It coexists with orientational motion
of solvent dipoles that was traditionally accepted [1, 2, 3,
4] to be the main origin of solvent polarization. On the
other hand, quadrupolar and higher multipolar moments
can be also considered in terms of a sophisticated refined
continuum theory [36, 37, 38]. Both types of effects
missing in traditional continuum formulations were
described in terms of a simple molecular level model
(mean spherical approximation or MSA [39, 40, 41])
based on a spherical approximation for shapes of solute
and solvent particles [42, 43]. It proved to be efficient in
describing changes of ET parameters for a single solute in
a number of solvents with varying polarity [44, 45].

A nonlocal electrostatic theory [46, 47] is a conven-
tional way to bring elements of internal solvent structure
into a continuum solvent treatment. In the static case,
the dielectric function e(k) of wave vector k carries all of
the information about the solvent structure. In the
simplest Lorentzian parameterization of e(k), the
parameter l, called ‘‘the correlation length’’, character-
izes the size of solvent particles. For a spherical ion of
radius r0 the expression for solvation energy is available
with an approximate [46, 47] or complete [48] accounting
of the excluded volume effect. The ratio l/r0, a measure
of characteristic sizes of solvent and solute particles,
governs the significance of effects of solvent structure.
This ratio also appears naturally in the MSA, the sim-
plest true molecular theory.

The Lorentzian permittivity model fails to account
completely for dielectric response in real solvents. Being
transformed to coordinate space this function generates a
purely exponential decay of screening effects. Numerical
simulations [49, 50, 51, 52, 53, 54] have revealed a pole

structure of e(k) generating oscillations of the permittivity
kernel and resulting response fields in coordinate space.
In an accurate simulation of water [55] a Lorentzian peak
was observed for small k values and it was suppressed by
pole singularities when k increased. This complicated
behavior, combining both decay and oscillation effects, is
caused by the interference of density and polarization
fluctuations of molecular solvent dipoles [56]. At a
qualitative level, the simple Lorentzian model with
several correlation lengths [47] remains a useful approxi-
mation. It can serve as a phenomenological counterpart
of simplistic molecular models, like MSA.

The MSA also proved to be successful for treating the
temperature dependence of reorganization energies [28,
29]. Here the solute radius depends on temperature
explicitly. The same result could be obtained by intro-
ducing the temperature dependence of the correlation
length l of non-local theories. However, in both cases the
spherical solute model is a quite undesirable limitation.
This is the basic motivation for considering sophisti-
cated molecular solvation theories in the context of ET
applications.

Molecular level solvent models

The linearized MD scheme

The general analysis from the section ‘‘The linear re-
sponse approach in the functional space’’ can be
implemented for molecular computations based on the
statistical mechanics treatment in terms of the Kirkwood
formula for the response kernel K(r,r¢) [57, 58]:

K r; r0ð Þ ¼ � 1

kBT
~UðrÞ � UðrÞ
� 


~Uðr0Þ � Uðr0Þ
� 
� �

q;T

ð22Þ

The response field ~UðrÞ is created in the solute region
by an instantaneous solvent configuration (see Fig. 4);
F(r)= ~UðrÞ

� �
q;T is the average field. The average . . .h iq;T

is performed in the external field created by the solute
charge distribution q at temperature T.

It was found, however [13], that a straightforward
simulation of Eq. 22 is inefficient. Simulations of aver-
age fields Fa(r) equilibrated to given charges qa(r)
proved to be more convenient. By this means the equi-
librium free energy is available as

DFa ¼
1

2

Z
d3rUaðrÞqaðrÞ ¼

1

2
qajK̂jqa

� �
ð23Þ

Cross terms (see Eq. 14), namely

�Tab ¼ qajK̂jqb

� �
ð24Þ

are also available after Ua ¼ K̂qa is calculated. There-
fore, the method used for computation of the reorgani-
zation matrix is established.
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We see from Eq. 22 that K(r,r¢) is, generally, q-
dependent. Strictly speaking, one should change K̂ to K̂a
in Eqs. 22, 23 and 24. The corresponding nonlinear ef-
fect can be estimated by studying the change of F during
the so-called charging process (when q is varied from
zero to the final value). For monatomic singly-charged
ions we have to change the charge Q in the range
0<|Q|<1; in this simple case it suffices to simulate
K(0,0)=F(r=0) as a function of |Q| (where r=0 is the
position of the ion). The results shown in Fig. 5 corre-
spond to a 3%, 4% and 7% nonlinearity correction in
the free solvation energy for Na+, F), and Cl), respec-
tively, in water solvent [13].

There are two sources responsible for the nonlinear
behavior. The first one is the solvent structure formation
in the close vicinity of a solute observed in weak electric
fields (small |Q| values) [14, 15]. The most remarkable

observation is that F 6¼0 when Q=0. The magnitude of
this effect is not quite clear (see the discussions in [59,
60]). It seems to disappear in stronger solute fields where
the linearity is regenerated. This explains naturally why
the nonlinearity for F) (smaller ion with stronger field) is
less than for Cl) (larger ion with a weaker field). At least
partly, this effect can be imitated, within a linear theory,
by introducing the field shift �UðQÞ (see earlier section on
‘‘The linear response approach in the functional space’’),
which does not vanish when Q=0 at equilibrium. This
shift should be attributed to the interference of Coulomb
and van der Waals effects revealed when Coulomb forces
are weak.

Another nonlinear effect arises as a dependence
of the response kernel on the sign of the charge Q.
For monatomic ions, the response kernel is different
for cations and anions with the same Lennard Jones
(LJ) parameters. For monatomic ions in water
@U
@Q=K(0,0) changes by �30% when the sign of the

charge is changed [13, 14, 16]. This asymmetry finds its

Fig. 4. Schemes of molecular/continuum solvent models. The
solute charge density is confined within the solute region. Explicit
solvent particles (crossed circles) fill the intermediate region. aMD/
FRCM: the solute and intermediate regions have different dielectric
permittivities (e=1 and e=e¥); bMD/PCM: the same e=1 for both
solute and intermediate regions (surface S1 is absent)

Fig. 5. Nonlinear effects in monoatomic ions. The average
potential F(r=0) calculated for variable charge Q, e denotes the
electronic charge. a Na+, F) and Cl) in water when Q changes
from 0 to +1e; b Cl) in water when Q changes from 0 to +0.4e
(dotted line). Solid line corresponds to the linear approximation
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explanation in terms of the asymmetry of charge dis-
tributions of solvent particles.

The last effect can be formally included in the line-
arization scheme by allowing the Q-dependence of ker-
nel K(r,r¢). As shown below, this sort of change becomes
much more visible in the context of studying reorgani-
zation rather than equilibrium solvation energies.

Separation of the inertial response

The inertialess response field is created due to a
polarization of the solvent electrons by the solute
charge. Its consistent treatment, therefore, implies that
polarizable solvent models must be implemented in
computations. The pertaining techniques have been
developing during the last decade [61, 62, 63, 64, 65,
66, 67, 68, 69, 70, 71 and references therein]. They treat
electronic polarization at classical mechanical level,
which is legitimate, due to the large distinction of
electronic and nuclear timescales, provided only its
average effect on the inertial nuclear dynamics is of
main interest. Full polarizable molecular level algo-
rithms require much more computational effort than
the standard nonpolarizable simulation schemes usually
applied. Polarizable methods provide total polarization
response as an output result, but the problem of an
extraction of its inertialess part can be resolved within
this technique [70, 71].

Several molecular level computations of ET reor-
ganization energies have been reported [72, 73, 74, 75,
76, 77,78, 79, 80]. They always encounter a problem of
a consistent separation of electronic (inertialess)
polarization. This problem was successfully solved in
simple continuum ET theories [1, 2, 3, 4, 81] by
introducing the so-called Pekar factor 1=e1 � 1=e0ð Þ,
where e¥ and e0 are optical and static dielectric con-
stants of a polar medium, see Eq. 21. A quantity of
this sort cannot naturally appear in a molecular sim-
ulation neglecting the electronic structure of solvent
particles. Having been intensively discussed in the re-
cent literature, the remedy to this serious deficiency of
microscopic models was in some cases, with slight
variations, reduced to a straightforward scaling of the
computational results. Specifically, it was proposed to
scale reorganization free energies by the ratio of the
polarizable (including e¥) and nonpolarizable (setting
e¥=1) Pekar factors [74, 75] (see also related discus-
sion in [72, 73, 82, 83]). However, when applied to
decoupling the electronic and nuclear response fields of
a solvent in the presence of a charged nonspherical
solute, such an approach seems to have no solid basis.
Suggesting an alternative point of view, the present
work circumvents this ad hoc postulate. According to
the approach outlined below, a nonpolarizable simu-
lation based on suitably scaled atomic point charges,
and associated with the response of heavy particles
(which promote the inertial polarization) directly yields
the inertial part of the solvation free energy. The

complementary inertialess part (the electronic response
to the field of a solute charge), which constitutes an
essential fraction of the total response, is estimated
within a continuum approach and added to the inertial
result extracted from a microscopic simulation. In this
way, the basic idea borrowed from the continuum ET
theory [1, 2, 3, 4, 81] is implemented in the context of
a combined molecular/continuum model of polar sol-
vation.

This consideration gives rise to the following model
[84]. Explicit solvent particles with mean dipoles �l and
associated mean point charges assigned to the selected
sites of the solvent molecules, �qmð

P
m �qm ¼ 0Þ, are im-

mersed in a medium with e=e¥. The solute particle
with charges qi (taken as nonpolarizable in the present
study) can be added to this picture, as shown in
Fig. 4a. It is placed at the center of the MD cell.
Nonelectrostatic intermolecular forces are described in
terms of pairwise LJ potentials. In order to treat elec-
trostatic forces we represent the solvent charge density
qslv as:

qslv ¼
X

m

�qmd r � rvð Þ ð25Þ

The electronic continuum is bounded from inside by
the solute region with e=1 occupying volume V0, which
is surrounded by boundary surface S1 (Fig. 4a). The
solute charge density qslt is represented analogously as:

qslt ¼
X

i

qid r � rið Þ ð26Þ

In order to properly treat long-range electrostatic
interactions we introduce the external continuum with
static dielectric constant e=e0. This continuum fills the
volume V2 outside boundary surface S2. The explicit
solvent region with e=e¥ and volume V1 is confined
between surfaces S1 and S2. A complication of the
model, due to the introduction of the external region, is
motivated by a purely technical reason of getting a
reasonably convergent computation.

A special comment is required about the nature of
solvent charges �qm. According to the above formulation,
they represent effective charge distributions of solvent
particles in the bulk solvent. That is to say, the charges
qm of isolated (gas phase) molecules are surrounded by a
cloud of electronic polarization that transforms them
into �qm. The ‘‘dressed’’ average charges �qm can be bor-
rowed from polarizable simulations of bulk solvent. The
main assumption of the present model introduces scaled
electrostatic interactions:

�ql�qm
e1rlm

and
qi�qm
e1rim

ðsolvent=solventÞ ðsolute=solventÞ
ð27Þ

where rlm ¼ jrl � rmj and rim ¼ jri � rmj.
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On the other hand, if one addresses nonpolarizable
simulations of the bulk solvent, the electrostatic inter-
actions are represented as

qeffl qeffm

rlm
ð28Þ

where qeffl;m represents effective solvent charges fitted
according to a particular nonpolarizable scheme. These
two pictures can be coordinated by assuming

qeffl ¼
�qlffiffiffiffiffiffi
e1
p ð29Þ

Therefore, one can perform a standard nonpolariz-
able simulation in the presence of the solute using
interaction laws (Eq. 27), provided the dressed charges
�qm are connected by Eq. 29 to the effective charges qeffm ,
corresponding, say, to the SPC water model.

The reasoning outlined above can be illustrated as
follows. The effective dipole moment of the SPC water
is leff=2.27D [85]. According to Eq. 29, the dipole
moment of dressed bulk water molecules is
�l ¼ leff ffiffiffiffiffiffi

e1
p

. For e¥=1.8 this gives �l ¼ 3:05D. This
value is in good agreement with recent estimates based
on calculation with polarizable models (2.95±0.2D [86,
87, 88, 89]) and experiment (2.9±0.6D [90]), which
supports the renormalization of charges as suggested
by Eq. 29 and provides a link between the present
approach and conventional nonpolarizable solvent
models.

To summarize, the electrostatic forces between ex-
plicit solute and solvent charges qi and �qm as well as
between solvent charges �ql, �qm, are scaled by the factor
1/e1. In combination with van der Waals (LJ) forces
they form the effective force field applied for a non-
polarizable MD simulation producing the equilibrium
ensemble of solvent particles. Such a simplistic treat-
ment of electrostatic interactions (neglecting the pres-
ence of the solute region V0 with e=1, as in Fig. 4a)
seems legitimate because the LJ forces due to the solute
provide the excluded volume effect so that solvent
particles cannot penetrate into V0. Computations con-
firm this guess [84].

The combination of charge distributions (25) and (26)
and the dielectric continuum scheme represented by
Fig. 4a leads to the following expression for the average
medium response field:

U rð Þ¼Ud rð ÞþUc rð Þ ð30Þ

The first term, called direct field, represents the elec-
trostatic response due to explicit solvent particles con-
tained in volume V1:

Ud rð Þ ¼
X

m

�qm

e1

1

jr � rmj

* +

q;T

ð31Þ

Here the average is performed over the equilibrium
ensemble found in the MD simulation described above.
The second term, called the continuum field, is the re-
sponse of the dielectric continuum, contained in both
volumes V1 and V2, to the electric field created by the
solute charge distribution (26). It is easy to see that its
computation can be performed in terms of the FRCM
procedure described above in the section ‘‘Breakdown of
the PCM approach and the advanced continuum the-
ory’’. The only modification assumes that the interme-
diate layer with volume V1 is much larger than in the
conventional purely continuum scheme; in the present
procedure the external boundary surface S2 is shifted as
far as possible away from the solute region in order to
properly represent the molecular structure of the sol-
vent. We have omitted in Eq. 30 small interference terms
arising from interactions of the explicit solvent charges
(Eq. 25) with the continuum. They were shown to be
negligible according to test computations [84].

The result (30) represents the total medium response.
In order to separate out its inertial part we simply repeat
the FRCM prescription:

Uin rð Þ ¼ Ud rð Þ þ Uc rð Þ � U1 rð Þ ð32Þ

where F¥(r) is found in a PCM computation in which
e=e¥ outside the surface S1 bounding the solute region
covering the whole external space.

First results from MD/FRCM computations

The computational scheme described in the section on
the ‘‘Separation of the inertial response’’ is called MD/
FRCM. It was applied for calculations of equilibrium
solvation energies for a large number of polyatomic
ions. The structure and charge distribution of the given
ion was computed using the restricted Hartree-Fock le-
vel with the 6–31G** basis set. The standard LJ
parameters, that were not specially calibrated to fit the
solvation energies, were used in MD simulations [91].
Water (the SPC model [85]) was considered as a solvent.
The computations showed [92] that the MD/FRCM
scheme works satisfactorily for nitrogen cations in the
frame of a standard parameterization and can be further
improved for oxygen ions by tuning solute/solvent LJ
parameters. The calculated relative change of the ener-
gies in families of similar cations (ammonium-type or
oxonium-type cations) fits the experimental trends.

A more conventional simple computational scheme is
illustrated in Fig. 4b. It counts the response field of ex-
plicit solvent particles in a straightforward manner by
performing a standard nonpolarizable MD simulation in
the region bounded by the external surface S2. Outside
this surface the solvent is modeled as a continuum with
e=e0. Similar to MD/FRCM, this approximation is
invoked only for a technical reason in order to keep the
MD run to a reasonable computational cost. The
response field has the form
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U rð Þ ¼
X qeff

m

jr � rmj

� �
q;T
þ UPCM rð Þ ð33Þ

The first term is a counterpart of the direct term (31)
arising in the MD/FRCM. Its averaging is performed in
the field created by the solute and explicit solvent par-
ticles. Contrary to Eq. 31, no scaling of solvent charges
is required both in the averaging procedure and at the
MD simulation stage. Obtained under such conditions,
this term exactly equals e¥Fd [84].

The second term in Eq. 33 is the continuum response
field available by a standard PCM procedure. Solvent
charges are neglected during this computation because
the contribution due to their polarization of the external
continuum proved to be negligible. The free energy
computations using response field (33) will be denoted as
MD/PCM.

The equilibrium solvation free energies obtained in
terms of MD/FRCM were shown [92] to be slightly
better (compared to the experiment) than those result-
ing from MD/PCM. More important is the advantage
that the separation of the inertial free energy contri-
bution is naturally included in the MD/FRCM,
whereas MD/PCM provides no consistent prescription
for this purpose. The only available way of doing this
is empirical scaling by means of the Pekar factor
1=e1 � 1=e0ð Þ [72, 73, 74, 75, 82, 83]. Table 2 compares
the results of the two methods for a series of poly-
atomic ions in water. The discrepancy is sometimes
significant but not impressive. A much larger deviation
was observed [92] in the test using tetrahydrofuran
(THF) solvent with e¥=1.97 and e0=7.58. The Pekar
factor scaling, being more or less acceptable for water,
becomes invalid for the case of THF. Direct contri-
bution to the solvation free energy (DFd) is also shown
in Table 2. It could be an adequate measure of
the inertial contribution provided the complementary

continuum field component in Eq. 30 is negligible; in
other words the external surface S2 is shifted extremely
far away from the solute region. This is not so in actual
computations.

In terms of MD/FRCM, we can fully apply the
methodology for a computation of charge transfer
reorganization energies developed in the section ‘‘The
reorganization energy’’. It was implemented for the
model two-site dipolar system in SPC water solvent.

In this scheme D is the intersite separation, q1 and q2
are site charges and RvdW are van der Waals radii de-
fined in terms of site Lennard Jones parameters.

We studied three different processes, represented
schematically as:

a. hole transfer: (1, 0) fi (0, 1)
b. electron transfer: (0, )1) fi ()1, 0)
c. charge separation: (0, 0) fi ()1, +1)

The numbers in brackets denote charge occupations
of sites 1 and 2.

The standard linear-response approach holds with
high accuracy for every particular reaction but it proved
to be significantly violated when reorganization energies
of different reactions were compared. The computations
are listed in Table 3.

This new result has a purely molecular origin and is
absent within a conventional continuum solvent model.
It can be explained in terms of the q-dependence of the
kernel of the response operator K̂ (Eqs. (1) and (22)).

More specifically, the continuum approach suggests
Eq. 13 as a common expression for all three reactions
a–c. Computations in Table 3, based on q-dependent
response operators K̂I and K̂II that represent initial (I)
and final (II) ET states, were obtained as half-sums of
corresponding reorganization energies kI and kII in ac-
cord with Eq. 11.

The observed discrepancy in reorganization energies
for the three reactions is significant. This effect is
probably exaggerated in the present treatment due to
the oversimplified solute model. We assumed the same

Table 2. The DF values computed via the MD/FRCM model using
ab initio RHF charges, the inertial component of solvation energy
DFin, and the direct part DFd

a. The inertial component calculated

using the Pekar/Born ratiob is also given. The units are Kcal/mol

Ion DF DFd
a DFin

MD/FRCM Pekar/Born ratiob

NH4+ )85.8 )34.1 )39.7 )47.2
MeNH3+ )74.1 )28.6 )34.4 )40.7
Me2NH2+ )65.7 )25.7 )31.4 )36.1
Me3NH+ )59.7 )22.9 )28.6 )32.8
PhNH3+ )65.1 )24.6 )30.4 )35.8
C5H5NH+ 57.9 )22.2 )27.9 )31.8
MeOH2+ )87.6 )40.0 )45.8 )48.2
EtOH2+ )83.8 )39.0 )44.7 )46.1
MeO) )106.3 )51.9 )57.7 )58.4
PhO) )72.6 )31.6 )37.5 )39.9

a The contribution due to the direct response field, Eq. 31;
b The scaling factor is 1

e1
� 1

e0

� �.
1� 1

e0

� �

Table 3. Reorganization energies k for reactions (a) (c)[84]

Type of reaction k (Kcal/mol)

D=10 Å D=5 Å

(a) 52.8 32.3
(b) 78.0 59.0
(c) 64.3 45.2
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LJ parameters for both dumbbell sites, irrespective of
the charges. Proper parameterization of solute/solvent
LJ forces for realistic chemical systems may well reduce
the magnitude of the observed discrepancies. The
finding that the effective radius of an anionic atomic
site is often larger than for the isoelectronic cationic
counterpart [14, 16] gives some support for this
expectation.

Conclusions

Computations of solvent reorganization energies k are
important, not only in the context of ET applications,
but also as an example of treating an essentially non-
equilibrium solvation phenomenon by means of meth-
odologies available in recent theoretical chemistry.
Standard purely electrostatic solvation models should be
refined in order to account properly for this sort of
phenomenon. Advanced continuum models, like
FRCM, are sufficient for the limited purpose of con-
sidering trends in k values for a series of ET solutes in a
single polar solvent. More subtle effects, associated with
combined translational and rotational motion of solvent
particles, can only be understood at a truly molecular
level of solvent description. They are usually revealed in
solutes of low polarity where purely electrostatic effects
are suppressed significantly. Being treated in terms of the
MSA model, assuming spherical shapes for solute par-
ticles, the molecular level approach can properly de-
scribe trends in solvation effects produced by a number
of solvents for a given single solute [28, 29, 42, 43, 44,
45]. The further refinement of the molecular approach,
free of such limitations, involves computer simulation
technologies.

Molecular level computations have revealed peculiar
nonlinear effects that can considerably modify the tra-
ditional concepts, based on the linear response approx-
imation, that underlie the recently accepted theory of ET
reactions. Currently, it is not clear to what extent these
observations, made for oversimplified model objects,
may be important in the world of real chemical ET
systems. Further studies in this direction are required.
Therefore, the theme discussed in the present article
seems to lie on the frontier of important applications of
recent theoretical chemistry and biology. Its further
development is expected to bring interesting results.
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